The Most Spoken Article on MVP Building
Practical AI Roadmap Workbook for Business Executives
A simple, practical workbook showing how AI can truly benefit your business — and where it may not be useful.
The Dev Guys – Mumbai — Smart thinking. Simple execution. Fast delivery.
The Need for This Workbook
In today’s business world, leaders are often told they must have an AI strategy. All around, people are piloting, selling, or hyping AI solutions. But business heads often struggle between two bad decisions:
• Agreeing to all AI suggestions blindly, expecting results.
• Rejecting all ideas out of fear or uncertainty.
It guides you to make rational decisions about AI adoption without hype or hesitation.
Forget models and parameters — focus on how your business works. AI should serve your systems, not the other way around.
Using This Workbook Effectively
Work through this individually or with your leadership team. The purpose is reflection, not speed. By the end, you’ll have:
• A prioritised list of AI use cases linked to your business goals.
• A visible list of areas where AI won’t help — and that’s acceptable.
• A clear order of initiatives instead of scattered trials.
Treat it as a lens, not a checklist. Your AI plan should be simple enough to explain in one meeting.
AI strategy equals good business logic, simply expressed.
Step One — Focus on Business Goals
Focus on Goals Before Tools
Too often, leaders ask about tools instead of outcomes — that’s the wrong start. Start with measurable goals that truly impact your business.
Ask:
• What 3–5 business results truly matter this year?
• Which parts of the business feel overwhelmed or inefficient?
• Which processes are slowed by scattered information?
AI is valuable only when it moves key metrics — revenue, margins, time, or risk. Ideas without measurable outcomes belong in the experiment bucket.
Skipping this step leads to wasted tools; doing it right builds power.
Step Two — Map the Workflows
Understand the Flow Before Applying AI
AI fits only once you understand the real workflow. Simply document every step from beginning to end.
Examples include:
• New lead arrives ? assigned ? nurtured ? quoted ? revised ? finalised.
• Customer issue logged ? categorised ? responded ? closed.
• Invoice generated ? sent ? reminded ? paid.
Every process involves what comes in, what’s done, and what moves forward. AI belongs where the data is chaotic, the task is repetitive, and the result is measurable.
Step 3 — Prioritise
Assess Opportunities with a Clear Framework
Choose high-value, low-effort cases first.
Think of a 2x2: impact on the vertical, effort on the horizontal.
• Quick Wins — high impact, low effort.
• Reserve resources for strategic investments.
• Minor experiments — do only if supporting larger goals.
• Avoid for Now — low impact, high effort.
Always judge the safety of automation before scaling.
Your roadmap starts with safe, effective wins.
Balancing Systems and People
Fix the Foundations Before You Blame the Model
Without clean systems, AI will mirror your chaos. Ask yourself: Is the data 70–80% complete? Are processes well defined?.
Keep Humans in Control
Keep people in the decision loop. Over time, increase automation responsibly.
Avoid Common AI Pitfalls
Learn from Others’ Missteps
01. The Shiny Demo Trap — getting impressed by flashy demos with no purpose.
02. The Pilot Problem — learning without impact.
03. The Automation Mirage — expecting overnight change.
Fewer, focused projects with clear owners and goals beat scattered enthusiasm.
Working with Experts
Non-tech leaders guide direction, not coding. Focus on measurable results, not buzzwords. Expose real examples, not just ideal scenarios. Clarify success early and plan stepwise rollouts.
Transparency about failures reveals true expertise.
Signals & Checklist
Signs Your AI Roadmap Is Actually Healthy
You can summarise it in one slide linked to metrics.
Your team discusses workflows and outcomes, not hype.
Pilots have owners, success criteria, and CFO buy-in.
Essential Pre-Launch AI Questions
Before any project, confirm:
• What measurable result does it support?
• Is the process clearly documented in steps?
• Is the data complete enough for repetition?
• Where will humans remain in control?
• How will success be measured in 90 days?
• If it fails, what valuable lesson remains?
Conclusion
AI done right feels stable, not overwhelming. A real roadmap is a disciplined sequence of high-value projects that strengthen your best people. When AI becomes part of your workflow quietly, it stops being AWS hype — it becomes infrastructure.